Opinion Analysis for Twitter and Arabic Tweets: a Systematic Literature Review Mnahel

نویسنده

  • AHMED IBRAHIM
چکیده

The objective of this paper is to present the current evidence relative to twitter opinion mining in general and also the current state of Arabic tweets’ opinion mining. The researcher performed a systematic literature review (SLR) to investigate features and methods used for twitter opinion mining and if those features and methods have been used for Arabic tweets opinion mining. Sixty five papers were used in our synthesis of evidences. Results showed that n-grams features are the most features used for twitter sentiments analysis and also for Arabic tweets. The most common methods used for twitter sentiments analysis is the Lexical based classification using Naive Bayes (NB) and Support Vector Machines (SVM), which are also used for Arabic tweets. In addition, evidence related to subjectivity and opinion target for twitter are highlighted. The results of this SLR show gaps in the research field: first, the lack of studies focusing on multilingual twitter sentiments analysis. Second, the lack of studies that investigate Arabic tweet opinion target. The third is the lack of studies investigating Arabic tweet subjectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets

Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...

متن کامل

Detection of Twitter Users' Attitudes about Flu Vaccine based on the Content and Sentiment Analysis of the Sent Tweets

Introduction: The influenza vaccine is one of the controversial challenges in today's societies. Considering the importance of using the flu vaccine in preventing the spread of influenza virus, the Twitter network, as a rich source of data, provides suitable conditions for research in this field to examine the attitudes of different people about this vaccine. The results in one hand will help h...

متن کامل

2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework

Big data analytics is one of the most important subjects in computer science. Today, due to the increasing expansion of Web technology, a large amount of data is available to researchers. Extracting information from these data is one of the requirements for many organizations and business centers. In recent years, the massive amount of Twitter's social networking data has become a platform for ...

متن کامل

Mining Trending Hash Tags for Arabic Sentiment Analysis

People text millions of posts everyday on microblogging social networking especially Twitter which make microblogs a rich source for public opinions, customer’s comments and reviews. Companies and public sectors are looking for a way to measure the public response and feedback on particular service or product. Sentiment analysis is an encouraging technique capable to sense the public opinion in...

متن کامل

Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data

Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013